TCS B.Sc Ignite \& Smart Hiring - Sample Question Paper

No. of Questions: 51
Total time: $\mathbf{1 2 0}$ minutes

Instructions: Please read the below instructions carefully before you take the test.

- Following are 51 questions with 50 MCQ questions and 1 Programming hands-on question. For each MCQ question, choose appropriate answer from the options given. For Programing hands-on questions, candidates need to attempt question in any one of the given five languages. (C, C++, JAVA, Python, Perl)
- There is no negative marking.

All the Best!

SECTION I: VERBAL ABILITY

	Sentences of a paragraph are given below. While the first and the last sentences (S1 and S 4) are given, some sentences (S2 and S3) are missing. Identify the alternatives that will meaningfully fill in the gaps. S1. Galen of Pergamon was a Greek physician, surgeon, and philosopher in the Roman Empire. S2. \qquad S3. \qquad S4. And yet Galen never conducted anything resembling an experiment. Alternatives: P. His writings were the indisputable source of medical authority for more than a thousand years. Q. It will be a field marred with arrogance, hubris, and a sheer lack of scientific rigour. R. Doubt is not a fearful thing and, as we'll soon learn, it's in fact what propels science forward. S. Considered to be one of the most accomplished of all medical researchers, Galen influenced the development of various scientific disciplines, including anatomy, physiology, pathology, pharmacology, and neurology.							
	a.	RP	b.	QS	c.	SP	d.	PQ
Q3	Sentences of a paragraph are given below in jumbled order. Arrange the sentences in the correct order to form a meaningful and coherent paragraph. A. Raja was a shoeshine boy. B. Raja was hard working and wanted to take care of his family. C. So, after school, he would sit near a cinema hall and polish shoes for a living. D. He lived with his mother and sister in a small jhuggi.							
	a.	ADBC	b.	CBDA	c.	ABDC	d.	BACD
Q4	Select the most appropriate option that can substitute the underlined segment in the given sentence. We live in a society that is not bound or connected to a religion or a religious body.							
	a.	orthodox	b.	rudimentary	c.	organic	d.	secular

	READING COMPREHENSION						
$\begin{array}{\|l\|} \hline \mathrm{RC} \\ \text { PSG } \end{array}$	Read the given passage and answer the question that follows. Gregor Mendel was born in a poor farmer's family in Austria in 1822. He was very fond of studies but the very thought of examinations made him nervous. He did not have money to study at the University so he thought of becoming a 'monk' in a monastery. He thought from there he would be sent to study further. Which he was. But to become a science teacher, he had to take an exam. He got so nervous that he kept running away from the exam and kept failing! But he did not stop doing experiments. For seven years, he did experiments on 28,000 plants in the garden of the monastery. He worked hard, collected many observations and made a new discovery! Something which scientists at that time could not even understand! They understood it many years after his death, when other scientists did such experiments and read what Mendel had already written. What did Mendel find in those plants? He found that the pea plant has some traits which come in pairs. Like the seed is either rough or smooth. It is either yellow or green, and the height of the plant is either tall or short. Nothing in between. The next generation (the children) of the plant which has either rough or smooth seeds will also have seeds which are rough or smooth. There is no seed which is mixed - a bit smooth and a bit rough. He found the same with colour. Seeds which are either green or yellow give rise to new seeds which are either green or yellow. The next generation does not have seeds with a mixed new colour made from both green and yellow. Mendel showed that in the next generation of pea plants, there will be more plants having yellow seeds. He also showed that the next generation will have more plants with smooth seeds. What a discovery!						
Q13	Which of the following is the most appropriate title for this passage?						
	a. The Colour of Peas	b.	An Amazing Discovery!	c.	A Rar	d.	Gardening in the Monastery
Q14	Select the most appropriate ANTONYM of the given word. Height						
	a. Length	b.	Stature	c.	Depth	d.	Figure

Q15	Select the most appropriate synonym of the given word. Traits							
	a.	Actions	b.	Qualities	c.	Components	d.	Routines
Q16	Why did Mendel join a monastery?							
	a.	Because he was interested in religion	b.	Because he was too nervous to pass examinations	c.	Because he wanted to continue his experiments there	d.	Because he didn't have money to study further
Q17	Select the statement which is NOT correct.							
	a.	Mendel conducted experiments for seven years on 28,000 plants.	b.	Mendel found that every pea has seeds which are either smooth or rough.	c.	Mendel found that the seeds of the next generation are in mixed new shades.	d.	Mendel found that the seeds of the next generation are rough or smooth.

Q24	If a company sells a bike with a marked price of ₹ 78,000 and gives a discount of 5% on ₹ 60,000 and 3% on the remaining amount, then the actual price charged by the company for a bike (in ₹) is:							
	a.	74,460	b.	75,520	c.	75,850	d.	75,952
Q25	If there are 63 litres of milk in a drum with a milk-to-water ratio of $7: 9$, what is the quantity of water in this mixture?							
	a.	63 litres	b.	79 litres	c.	81 litres	d.	98 litres
Q26	A recipe for a smoothie calls for 1 cup of strawberries for every 2 cups of milk. If you want to make a smoothie using 4 cups of strawberries, then how many cups of milk should you use?							
	a.	2	b.	4	c.	6	d.	8
Q27	A person invested ₹ 25,800 for $1 \frac{2}{5}$ years at $13 \frac{4}{7} \%$ rate of simple interest, then what is the total amount (in ₹) received by the person?							
	a.	30,722	b.	30,720	c.	30,072	d.	30,702
Q28	The ratio of the compound interest accrued for 2 years and the simple interest accrued for 1 year on the same amount at $r \%$ p.a. is 2.21 . What is the value of r ?							
	a.	21	b.	11	c.	20	d.	10
Q29	The ratio between the speeds of two trains is $3: 5$. If the second train runs 300 km in 4 hours, then the speed of the first train (in km / h) is:							
	a.	35	b.	45	c.	55	d.	65
Q30	4 women and 3 men can do a piece of work in 20 days while 2 women and 4 men can do the same piece of work in 30 days. How much time will be taken by 7 women and 9 men to do the same piece of work?							
	a.	21 days	b.	18 days	c.	15 days	d.	10 days

	Section III : Reasoning Ability						
Q40	In a hospital, there are seven patients $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}$ and V (including children and men). They are admitted in three rooms-7, 8 and 9 . At least two patients are in each room, and at least one child is in each room. R , who is a child, is not admitted in the room of P and T . U (man) is admitted in the room in which only Q is admitted. P (child) is admitted in room 7 with his father and $\mathrm{T} . \mathrm{V}$ is admitted in room $9 . \mathrm{T}$ is the father of R but not of P . How many children are there in the three rooms?						
	a. 4	b.	3	c.	3 or 4	d.	Data in adequate
Q41	Read the given statements and conclusions carefully. Assuming that the information given in the statements is true, even if it appears to be at variance with commonly known facts, decide which of the given conclusions logically follow(s) from the statements. Statements: 1. Some hill is land. 2. All land is plateau. 3. A few lands are peaks. Conclusions: I. Some peaks are hills. II. No peak is a hill.						
	a. Only conclusion I follows.	b.	Only conclusion II follows.	c.	Either conclusion I or II follows.	d.	Neither conclusion I nor II follows.
Q42	Select the letter-cluster from among the given options that can replace the question mark (?) in the following series. CFM, GLR, KRW, OXB, ?						
	a. SDG	b.	SDH	c.	TDG	d.	TEG

C Language

Q51 Question STEM:

. 1 Two girls are playing with the balls. They are having green, yellow and red balls. The task is to find in how many ways they can place these balls in straight so that no two balls of the same type are next to each other.

Example:

Example 1:

Input:

Green $(\mathrm{G})=1, \operatorname{Yellow}(\mathrm{Y})=1, \operatorname{Red}(\mathrm{R})=0$
There are only two arrangements GY and YG

Output:

Output: 2

Explanation:

The program uses recursive function calls to list the ways in which the balls can be placed, and these function calls use the call to store the average values.

Constraints and Input/Output Format:

Constraints:
For each ball placement, there are three possibilities (G, Y, or R) and there are n balls in total. Therefore, the total number of possible arrangements is $3^{\wedge} \mathrm{n}$.

Input Format:

$\mathrm{G}=1, \mathrm{Y}=1, \mathrm{R}=1$
There are only six arrangements
GYR,
YGR,
YRG,
RYG,
GRY
and
RGY

Output Format:

Output: 6

Q51 Question STEM:

. 2 Two girls are playing with the balls. They are having green, yellow and red balls. The task is to find in how many ways they can place these balls in straight so that no two balls of the same type are next to each other.

Example:

Example 1:

Input:

Green $(\mathrm{G})=1, \operatorname{Yellow}(\mathrm{Y})=1, \operatorname{Red}(\mathrm{R})=0$
There are only two arrangements GY and YG

Output:

Output: 2

Explanation:

The program uses recursive function calls to list the ways in which the balls can be placed, and these function calls use the call to store the average values.

Constraints and Input/Output Format:

Constraints:

For each ball placement, there are three possibilities (G, Y, or R) and there are n balls in total. Therefore, the total number of possible arrangements is $3^{\wedge} \mathrm{n}$.

Input Format:

$\mathrm{G}=1, \mathrm{Y}=1, \mathrm{R}=1$
There are only six arrangements
GYR,
YGR,
YRG,
RYG,
GRY
and
RGY

Output Format:

Output: 6
\quad JAVA Language

Q51 Question STEM:
. 3 Two girls are playing with the balls. They are having green, yellow and red balls. The task is to find in how many ways they can place these balls in straight so that no two balls of the same type are next to each other.

Example:

Example 1:
Input:
Green $(G)=1, \operatorname{Yellow}(Y)=1, \operatorname{Red}(R)=0$
There are only two arrangements GY and YG

Output:

Output: 2

Explanation:

The program uses recursive function calls to list the ways in which the balls can be placed, and these function calls use the call to store the average values.

Constraints and Input/Output Format:
 Constraints:

For each ball placement, there are three possibilities (G, Y, or R) and there are n balls in total. Therefore, the total number of possible arrangements is $3^{\wedge} n$.

Input Format:

$\mathrm{G}=1, \mathrm{Y}=1, \mathrm{R}=1$
There are only six arrangements
GYR,
YGR,
YRG,
RYG,
GRY
and
RGY

Output Format:

Output: 6

PYTHON Language

Q51 Question STEM:

. 4 Two girls are playing with the balls. They are having green, yellow and red balls. The task is to find in how many ways they can place these balls in straight so that no two balls of the same type are next to each other.

Example:

Example 1:

Input:

Green $(G)=1, \operatorname{Yellow}(Y)=1, \operatorname{Red}(R)=0$
There are only two arrangements GY and YG

Output:

Output: 2

Explanation:

The program uses recursive function calls to list the ways in which the balls can be placed, and these function calls use the call to store the average values.

Constraints and Input/Output Format:
 Constraints:

For each ball placement, there are three possibilities (G, Y, or R) and there are n balls in total. Therefore, the total number of possible arrangements is $3^{\wedge} n$.

Input Format:

$\mathrm{G}=1, \mathrm{Y}=1, \mathrm{R}=1$
There are only six arrangements
GYR,
YGR,
YRG,
RYG,
GRY
and
RGY

Output Format:

Output: 6

PERL Language

Q51 Question STEM:

. 5 Two girls are playing with the balls. They are having green, yellow and red balls. The task is to find in how many ways they can place these balls in straight so that no two balls of the same type are next to each other.

Example:

Example 1:

Input:

Green $(\mathrm{G})=1, \operatorname{Yellow}(\mathrm{Y})=1, \operatorname{Red}(\mathrm{R})=0$
There are only two arrangements GY and YG

Output:

Output: 2

Explanation:

The program uses recursive function calls to list the ways in which the balls can be placed, and these function calls use the call to store the average values.

Constraints and Input/Output Format:

Constraints:

For each ball placement, there are three possibilities (G, Y, or R) and there are n balls in total. Therefore, the total number of possible arrangements is $3^{\wedge} \mathrm{n}$.

Input Format:

$\mathrm{G}=1, \mathrm{Y}=1, \mathrm{R}=1$
There are only six arrangements
GYR,
YGR,
YRG,
RYG,
GRY
and
RGY

Output Format:

Output: 6

